Morphological Image Analysis for Computer Vision Applicationsстатья

Информация о цитировании статьи получена из Scopus
Дата последнего поиска статьи во внешних источниках: 7 октября 2020 г.

Работа с статьей

[1] Morphological image analysis for computer vision applications / Y. V. Vizilter, Y. P. Pyt’ev, A. I. Chulichkov, L. M. Mestetskiy // Computer Vision in Control Systems-1. Mathematical Theory. — Vol. 73 of Intelligent Systems Reference Library. — Cham, Switzerland: Cham, Switzerland, 2015. — P. 9–58. Some original and novel morphological concepts and tools are presented in this chapter as well as required amount of mathematical morphological basics. The continuous binary morphology based on a computational geometry is presented as a very fast approach to shape representation via real-time computation of figures’ skeletons. A skeletal representation of the figure is formed as a skeleton graph, and the radial function is determined in skeleton points. The proposed morphological spectrum is the multi-scale morphological shape description and analysis tools based on granulometry. It is shown how the tasks of change detection and shape matching in images can be solved using a morphological image analysis. The projective morphology as a generalized framework based on the mathematical morphology and the morphological image analysis provides fast and efficient solutions of morphological segmentation problem in complex images. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть