Аннотация:Frequency-shifted solitons in a highly nonlinear photonic-crystal fiber (PCF) are shown to give rise to high-visibility interference fringes in PCF output spectra, indicating flat spectral phase profiles of individual solitons in the PCF output (Fig. 59.1). This experimental finding, supported by numerical simulations, suggests a promising method of fiber-format pulse shaping and an attractive technology for few-cycle pulse synthesis through a coherent addition of frequency-shifted solitons generated in a highly nonlinear fiber [1].
Coupling ultrashort optical field waveforms to ultrafast molecular vibrations in an impulsively excited Raman medium is shown to enable the generation of frequency-tunable sub-half-cycle multigigawatt light pulses. In a gas-filled hollow waveguide, this coupled-state dynamics is strongly assisted by soliton effects, which help to suppress temporal stretching of subcycle optical pulses, providing efficient Raman-type impulsive excitation of ultrafast molecular vibrations over large propagation paths [2].