Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wellsстатья
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 5 июня 2017 г.
Аннотация:The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg1 − xCdxTe epitaxial films with x = 0.19–0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30–90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From the measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 μm are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.