Primal-dual subgradient methods for huge-scale linear conic problemsстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 2 апреля 2015 г.
Аннотация:In this paper we develop a primal-dual subgradient method for solving huge-scale
Linear Conic Optimization Problems. Our main assumption is that the primal cone is
formed as a direct product of many small-dimensional convex cones, and that the matrix
A of corresponding linear operator is uniformly sparse. In this case, our method can
approximate the primal-dual optimal solution with accuracy ϵ in O(1/ϵ^2)iterations. At
the same time, complexity of each iteration of this scheme does not exceed O(rq log_2 n)
operations, where r and q are the maximal numbers of nonzero elements in the rows and
columns of matrix A, and n is the number variables.