Geometrical Inverse Thermoelastic Problem for Multiple Inhomogeneitiesстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Дата последнего поиска статьи во внешних источниках: 18 февраля 2018 г.

Работа с статьей

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен

[1] Kaptsov A. V., Shifrin E. I. Geometrical inverse thermoelastic problem for multiple inhomogeneities // Mechanics for Materials and Technologies. — Vol. 46 of Advanced Structured Materials. — Springer, 2017. — P. 279–295. Geometrical inverse thermoelastic problem is considered. It is assumed that a finite number of inhomogeneities (cavities, cracks, inclusions) are located inside a linearly elastic, mechanically and thermally isotropic 3D body. It is assumed also that mechanical and steady-state thermal loads are applied to the external boundary of the body in a single experiment. As a result of the experiment the displacements and the applied mechanical loads are measured on the external boundary. A method for identification of the number and locations of the inhomogeneities, which are considered as point defects, is developed. It is important to stress that the identification method is based only on the knowledge of the displacements and the applied mechanical loads, if any, on the external boundary of the body. The knowledge of the temperature field on the external boundary of the body and the conditions of heat exchange between the matrix and inclusions are not assumed. Numerical examples illustrating the efficiency of the developed method are considered. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть